Problem Sheet 6

- 1. (4 points) Let K be an algebraically closed field of characteristic zero. Determine an algebraic closure of K(T) and determine the absolute Galois group.
- 2. (4 points) Does the field $\mathbb{Q}((T))$ possess a Galois extension with Galois group S_6 ? If yes, give an example, or a disproof. Can such an extension be totally ramified?
- 3. (2+1+1 points) (a) Suppose L/K is a separable extension of prime degree n. Show that for all $\gamma \in \mathfrak{m}_L$

$$N_{L/K}(1+\gamma) = 1 + N_{L/K}(\gamma) + \operatorname{Tr}_{L/K}(\gamma) + \operatorname{Tr}_{L/K}(\delta)$$

for some $\delta \in \mathcal{O}_L$ with $v_L(\delta) \geq 2v_L(\gamma)$.

Suppose now that L/K is unramified of arbitrary degree n.

- (b) Show that $\lambda_{0,K}N_{L/K}(x) = N_{k_L/k_K}\lambda_{0,L}(x)$ for all $x \in U_L$.
- (c) Show that $\lambda_{i,K} N_{L/K}(x) = \operatorname{Tr}_{k_L/k_K} \lambda_{i,L}(x)$ for $i \geq 1$.

where $\lambda_{i,K}$ denotes the isomorphisms between $U_K^{(i)}/U_K^{(i+1)}$ and the additive resp. multiplicative group of the residue field for K (and analogously $\lambda_{i,L}$ for L).

- 4. (2+2 points) (Newton polygons continued) Let $f = 1 + a_1T + a_2T^2 + ...$ be a power series with Newton polygon N(f).
 - (a) Let $b = \sup\{\lambda : \lambda \text{ is a slope of } N(f)\}$. Prove that the convergence radius of f is p^b . (Assume first that f is not a polynomial. Then find an interpretation such that the statement also makes sense for polynomials.)
 - (b) Find f such that N(f) has an irrational slope.

Please hand in your solutions in the lecture on Tuesday, 20th of November. You may work in groups of at most three students.