Problem Sheet 3

1. (4 points) Consider the power series in $\mathbb{Q}_p[[T]], (p \neq 2)$

$$f(T) = \sum_{n=0}^{\infty} {1/2 \choose n} T^n,$$

where $\binom{a}{n} = \frac{a(a-1)\cdots(a-n+1)}{n!}$. Compute its radius of convergence. What is $f\left(\frac{7}{9}\right)$ in \mathbb{Q}_7 ?

- 2. (4 points) Let K be a field, and let $|\cdot|_1, \ldots, |\cdot|_n$ be non-trivial absolute values on K such that no two of them are equivalent. Assume we are given $x_1, \ldots, x_n \in K$. Prove that for every every $\varepsilon > 0$ there exists an x such that $|x_i x|_i < \varepsilon$. For $K = \mathbb{Q}$, compare this to the Chinese Remainder Theorem.
- 3. (4 points) (Product formula) Let K be a number field, and Σ_K the set of places. Normalize the valuations by

 $\begin{cases} |\pi_v|_v = q_v^{-1} & \text{if } v \text{ is non-archimedean, with } \pi_v \in \mathcal{O}_v \text{ a uniformizer, } q_v = |\mathcal{O}_v/\pi_v|, \\ \text{usual absolute value} & \text{if } v \text{ is archimedean.} \end{cases}$

Set $\varepsilon_v = 2$ for all complex places v, and $\varepsilon_v = 1$ for all other places. Show that for every $x \in K$,

$$\prod_{v \in \Sigma_K} |x|_v^{\varepsilon_v} = 1.$$

(Hint: Reduce to the case $K = \mathbb{Q}$.)

- 4. (4 points) Let $(K, |\cdot|)$ be a non-archimedean valued field, with $\mathcal{O} = \{x \colon |x| \le 1\}$ its ring of integers, $\mathfrak{m} = \{x \colon |x| < 1\}$ its maximal ideal, and $k = \mathcal{O}/\mathfrak{m}$ its residue field. Assume that $|\cdot|$ extends to a separable closure K^{sep} . Show that the following are equivalent.
 - i) The local ring \mathcal{O} is Henselian, i.e. given a monic polynomial $f \in \mathcal{O}[X]$, such that its reduction $\bar{f} \in k[X]$ splits as the product of two coprime polynomials $\bar{g}, \bar{h} \in k[X]$, there exist lifts $g, h \in \mathcal{O}[X]$ such that f = gh.
 - ii) Consider a separable polynomial $f \in K[x]$ with roots $\alpha_1, \ldots, \alpha_n \in K^{sep}$, and let $\beta \in K^{sep}$ such that

$$|\beta - \alpha_1| < |\alpha_i - \alpha_1|$$

for i = 2, ..., n. Then $K(\alpha_1) \subseteq K(\beta)$.

Please hand in your solutions in the lecture on Tuesday, 6th of November. You may work in groups of at most three students.