Problem Sheet 11

- 1. (a) Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}[p^{-1}]/\mathbb{Z}) \simeq \mathbb{Q}_p$. Deduce that $\operatorname{Hom}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z}) \simeq \prod_{p \text{ prime}} \mathbb{Q}_p$.
 - (b) The group of finite adeles is defined to be

$$\mathbb{A}^{\infty}_{\mathbb{Q}} \coloneqq \{ (x_p) \in \prod_{p \text{ prime}} \mathbb{Q}_p \colon x_p \in \mathbb{Z}_p \text{ for all but finitely many } p \}.$$

Prove that $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) \simeq \mathbb{A}^{\infty}_{\mathbb{Q}}/\mathbb{Q}$. (*Hint: For (b) use the exact sequence* $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ and (a). For (a), prove first that $\mathbb{Q}/\mathbb{Z} \simeq \bigoplus \mathbb{Z}[p^{-1}]/\mathbb{Z}$. You will use this fact two times in the exercise.)

Some exercises recalling material we touched in the middle of term:

- 1. Let K/\mathbb{Q}_p be a finite extension.
 - Show that the group \mathcal{O}_K^{\times} is compact in the topology of the valuation.
 - Suppose L/K is an algebraic extension. Show that if the norm image $N_{L/K}(L^{\times})$ is of finite index in K^{\times} , it is a clopen subgroup.
- 2. Let R be any ring and $u \in R^{\times}$. Check that

$$F(x,y) := \frac{x+y}{1+\frac{xy}{u}}$$

defines a formal group law over R (not important: there is a link to velocities in physics explaining why it should...). If R contains \mathbb{Q} and u := 1, describe explicitly an isomorphism between F and the additive formal group law $\widehat{\mathbb{G}}_a$.

3. Let F_f be the Lubin-Tate formal group law for

$$f = (1+X)^p - 1$$

on \mathbb{Q}_p (with $L = K = \mathbb{Q}_p$).

- Provide¹ a primitive element and compute its minimal polynomial for the field extension $\mathbb{Q}_p[\mu_{f,m}]/\mathbb{Q}_p$ for m = 1, 2, 3.
- Provide an isomorphism (over \mathcal{O}_K) between F_f and $\widehat{\mathbb{G}}_m$.

¹Giving its minimal polynomial is sufficient

- Compute the scalar operation $[p^2]_{f,f}$ as a power series.
- 4. Let F_f be the Lubin-Tate formal group law for

$$f = X^p + pX$$

on \mathbb{Q}_p (with $L = K = \mathbb{Q}_p$).

- Provide² a primitive element and compute its minimal polynomial for the field extension $\mathbb{Q}_p[\mu_{f,m}]/\mathbb{Q}_p$ for m = 1, 2, 3.
- Is the formal group law F_f isomorphic (over \mathcal{O}_K) to $\widehat{\mathbb{G}}_m$?
- (tricky, but well worth it!) Let ζ be a primitive (p-1)-th root of unity in \mathbb{Q}_p (give a detailed argument why ζ exists!). Compute the scalar operation $[\zeta]_{f,f}$ as a power series.

[Hint: pick elements y_n such that $[p]y_n = y_{n-1}$, show that their minimal polynomials are polynomials in X^{p-1} . Conclude that there exists a Galois automorphism of the Lubin–Tate extension tower such that $\sigma y_n = \zeta y_n$ holds simultaneously for all n. Now use some theory!]

• Use the previous part of the exercise to show the following: Expanding $F_f \in \mathcal{O}_K[[X, Y]]$ as

$$F_f(X,Y) = X + Y + \sum_{i,j} g_{i,j} X^i Y^j,$$

we have

 $g_{i,j} = 0$ for all indices $i + j \not\equiv 1 \mod(p-1)$.

(Hint: It is not necessary to attempt to compute the $g_{i,j}$ directly for this)

- 5. Compute
 - the Galois cohomology group $H^1(\mathbb{Q}, \mu_{\overline{\mathbb{Q}},n})$, where $\mu_{\overline{\mathbb{Q}},n}$ denotes the Galois module of *n*-th roots of unity inside an algebraic closure $\overline{\mathbb{Q}}$.
 - the Galois cohomology group $H^1(\mathbb{C}, \mathbb{Q}/\mathbb{Z})$,
 - for $G := Gal(\mathbb{F}_{p^r}/\mathbb{F}_p)$ the group $H_1(G,\mathbb{Z})$,
 - for $G := Gal(\mathbb{F}_{p^r}/\mathbb{F}_p)$ the Tate cohomology group $\widehat{H}^0(G, \mathbb{F}_{p^r}^{\times})$.

²Giving its minimal polynomial is sufficient