Problem Sheet 1

- 1. (2+2 points) Let $x \in \mathbb{Q}_p$ with *p*-adic expansion $x = \sum_{n=N}^{\infty} a_n p^n$.
 - (a) What is the *p*-adic expansion of -x?
 - (b) Show that x lies in \mathbb{Q} if and only if the sequence (a_n) is eventually periodic.
- 2. (1+1+1+1 points) (Cardinalities)
 - (a) Prove that on a finite field every absolute value is trivial.
 - (b) What is the cardinality of \mathbb{Q}_p ?
 - (c) Show that a complete valued field has never countable infinite cardinality, unless the absolute value is trivial. (*Hint: Use the Baire category theorem. If you don't know it, google it.*)
 - (d) Define the *p*-adic complex numbers,

$$\mathbb{C}_p \coloneqq \widehat{\overline{\mathbb{Q}_p}},$$

i.e. the completion of the algebraic closure of \mathbb{Q}_p . We will prove soon that this field is algebraically closed. Assuming this, deduce that there exists a field isomorphism $\mathbb{C}_p \simeq \mathbb{C}$, but no such isomorphism of topological fields.

3. (2+2 points) (a) Recall that $\hat{\mathbb{Z}}$ was defined to be $\lim(\mathbb{Z}/n\mathbb{Z})$. Prove that

$$\hat{\mathbb{Z}} \simeq \prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}$$

- (b) Let \mathbb{F}_q denote the finite field with q elements, and $\overline{\mathbb{F}_q}$ an algebraic closure. Under the identification $\operatorname{Gal}\left(\overline{\mathbb{F}_q}/\mathbb{F}_q\right) \cong \hat{\mathbb{Z}}$, describe the fixed field of \mathbb{Z}_ℓ acting on $\overline{\mathbb{F}_q}$.
- 4. (4 points) Show that a valued field $(K, |\cdot|)$ is non-archimedean if and only if the set

$$\{|n|: n \in \operatorname{im}(\mathbb{Z} \to K)\}$$

is bounded. Deduce that on a field of positive characteristic, all absolute values are non-archimedean.

Please hand in you solutions in the lecture on Tuesday, 23rd of October. You may work in groups of at most three students.